Differential subordination and superordination results for generalized "Srivastava-Attiya" fractional integral operator

Amit Soni

Abstract

In this paper, we derive some subordination and superordination results for the generalized "Srivastava- Attiya" fractional integral operator. Some interesting corollaries for this operator is also obtained.

1. Introduction and preliminaries

Let $\mathcal{H}(\mathbb{U})$ denote the class of analytic functions in the open unit disk $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$ and $\mathcal{S}(\mathbb{U})$ denote the subclass of $\mathcal{H}(\mathbb{U})$ consisting of functions which are also univalent in \mathbb{U}. Further let $\mathcal{H}[a, p]$ be the subclass of $\mathcal{H}(\mathbb{U})$ consisting of function of the form

$$
f(z)=a+a_{p} z^{p}+a_{p+1} z^{p+1}+\ldots, \quad(a \in \mathbb{C}, p \in \mathbb{N}=\{1,2,3, \ldots\})
$$

Let \mathcal{A}_{p} denote the class of all analytic functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k}, \quad(p \in \mathbb{N}) \tag{1}
\end{equation*}
$$

For simplicity, we write $\mathcal{A}_{1}:=\mathcal{A}$.
Given two functions $f \in \mathcal{H}(\mathbb{U})$ and $g \in \mathcal{H}(\mathbb{U})$, we say that f is subordinate to g or g is superordinate to f in \mathbb{U} and write $f \prec g$, if there exists a Schwarz function w, analytic in \mathbb{U}, with $w(0)=0$ and $|w(z)|<1, z \in \mathbb{U}$, such that $f(z)=g(w(z))$ in \mathbb{U}. In particular, if $g(z)$ is univalent in \mathbb{U}, we have the following equivalence:

$$
f(z) \prec g(z), \quad(z \in \mathbb{U}) \quad \Longleftrightarrow \quad[f(0)=g(0) \text { and } f(\mathbb{U}) \subset g(\mathbb{U})]
$$

Supposing that h and k are two analytic functions in \mathbb{U}, let $\phi(r, s, t ; z)$: $\mathbb{C}^{3} \times \mathbb{U} \rightarrow \mathbb{C}$. If h and $\phi\left(h(z), z h^{\prime}(z), z^{2} h^{\prime \prime}(z) ; z\right)$ are univalent and if h and

[^0]$\phi\left(h(z), z h^{\prime}(z), z^{2} h^{\prime \prime}(z) ; z\right)$ are univalent functions in \mathbb{U} and h satisfies the second-order superordination
\[

$$
\begin{equation*}
k(z) \prec \phi\left(h(z), z h^{\prime}(z), z^{2} h^{\prime \prime}(z) ; z\right), \tag{2}
\end{equation*}
$$

\]

then $k(z)$ is said to be a solution of the differential superordination (2). A function $q \in \mathbb{U}$ is called a subordinant of (2), if $q(z) \prec h(z)$ for all the functions h satisfying (2). A univalent subordinant that satisfies $q(z) \prec \tilde{q}(z)$ for all of the subordinants q of (2), is said to be the best subordinant. Recently, Miller and Mocanu [6] obtained the sufficient conditions on the functions k, q and ϕ for which the following implication holds:

$$
k(z) \prec \phi\left(h(z), z h^{\prime}(z), z^{2} h^{\prime \prime}(z) ; z\right) \quad \Rightarrow \quad q(z) \prec h(z) .
$$

Using results of Miller and Mocanu [6], Bulboacã [2] considered certain classes of first order differential superordination as well superordinationpreserving integral operators [3] . Ali et al. [1] have used the results of Bulboacã [2] to obtain sufficient conditions for normalized analytic functions to satisfy

$$
q_{1}(z) \prec \frac{z f^{\prime}(z)}{f(z)} \prec q_{2}(z),
$$

where q_{1} and q_{2} are given univalent function in \mathbb{U}. Also, Shanmugam et al. [10] obtained sufficient conditions for a normalized analytic $f(z)$ to satisfy

$$
\begin{aligned}
& q_{1}(z) \prec \frac{f(z)}{z f^{\prime}(z)} \prec q_{2}(z), \\
& q_{1}(z) \prec \frac{z^{2} f^{\prime}(z)}{(f(z))^{2}} \prec q_{2}(z),
\end{aligned}
$$

where q_{1} and q_{2} are given univalent function in \mathbb{U} with $q_{1}(0)=1$ and $q_{2}(0)=1$. Further subordination results can be found in $[7,8,11-13]$.

The fractional integral operator (see [20]) of order $\lambda(\lambda>0)$ is defined for a funtion f by

$$
\begin{equation*}
D_{z}^{-\lambda} f(z)=\frac{1}{\Gamma(\lambda)} \int_{0}^{z} \frac{f(t)}{(z-t)^{1-\lambda}} d t \tag{3}
\end{equation*}
$$

where f is analytic function in a simply-connected region of z-plane containing the origin and the multiplicity of $(z-t)^{1-\lambda}$ is removed by requiring $\log (z-t)$ to be real, when $\Re(z-t)>0$.

Recently, Srivastava and Attiya [21] introduced and investigated the linear operator: Now for $f \in \mathcal{A}, b \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}$and $s \in \mathbb{C}$, we define the function $G_{s, b}(z)$ by

$$
\begin{equation*}
G_{s, b}(z):=(1+b)^{s}\left[\Phi(z, s, b)-b^{-s}\right], \quad(z \in \mathbb{U}) \tag{4}
\end{equation*}
$$

We also denote by

$$
J_{s, b}(f): \mathcal{A} \longrightarrow \mathcal{A}
$$

the linear operator defined by

$$
\begin{equation*}
J_{s, b}(f)(z):=G_{s, b}(z) * f(z), \quad\left(z \in \mathbb{U} ; f \in \mathcal{A} ; b \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-} ; s \in \mathbb{C}\right) \tag{5}
\end{equation*}
$$

in terms of the Hadamard product (or convolution).
We note that

$$
\begin{equation*}
J_{s, b} f(z)=z+\sum_{k=2}^{\infty}\left(\frac{1+b}{k+b}\right)^{s} a_{k} z^{k}, \quad\left(z \in \mathbb{U} ; b \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-} ; s \in \mathbb{C} ; f \in \mathcal{A}\right) \tag{6}
\end{equation*}
$$

Remark 1. It follows from (5) and (6) that one can define the operator $J_{s, b}(f)$ for $b \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}$. Therefore, we may use the following limit relationship:

$$
\begin{equation*}
J_{s, 0} f(z):=\lim _{b \rightarrow 0}\left\{J_{s, b}(f)(z)\right\} \tag{7}
\end{equation*}
$$

Motivated essentially by the above-mentioned "Srivastava-Attiya" operator, Wang [22] introduced the operator for the class \mathcal{A}_{p}.

$$
\begin{equation*}
J_{s, b}^{\alpha, p}(f): \mathcal{A}_{p} \rightarrow \mathcal{A}_{p} \tag{8}
\end{equation*}
$$

which is defined as

$$
\begin{equation*}
J_{s, b}^{\alpha, p} f(z)=z^{p}+\sum_{k=1}^{\infty} \frac{(\alpha+p)_{k}}{k!}\left(\frac{p+b}{p+k+b}\right)^{s} a_{p+k} z^{p+k}, \quad(z \in \mathbb{U}) \tag{9}
\end{equation*}
$$

where $(\nu)_{k}$ is the Pochhammer symbol defined by

$$
(\nu)_{k}:=\left\{\begin{array}{cl}
1, & k=0 \tag{10}\\
\nu(\nu+1) \cdots(\nu+k-1), & k \in \mathbb{N}
\end{array}\right.
$$

Recently q-extension of "Srivastava-Attiya" operator have been studied in [19], the mathematical applications of q-calculus, fractional q-calculus and the fractional q-derivative operators can be seen in [15]. Srivastava et al. [18] also reconnoiter the not-yet-widely-known fact that the so-called (p, q) variation of classical q-calculus is a rather trivial and inconsequential variation of classical q-calculus. For more detail and related works one can see in $([9,14,16,17])$.
Unless otherwise mentioned, we assume throughout this paper that the parameter s, b, p and α are constrained as follows:

$$
\begin{equation*}
s \in \mathbb{C} ; \quad b \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-} ; \quad p \in \mathbb{N} \text { and } \alpha>-p \tag{11}
\end{equation*}
$$

From (3) and (9), we get the fractional integral operator $\mathfrak{D}_{z}^{-\lambda} J_{s, b}^{\alpha, p} f(z)$ defined as

$$
\begin{align*}
& \mathfrak{D}_{z}^{-\lambda} J_{s, b}^{\alpha, p} f(z)=\frac{\Gamma(p+1)}{\Gamma(\lambda+p+1)} z^{\lambda+p} \\
& \quad+\sum_{k=1}^{\infty} \frac{(\alpha+p)_{k}}{k!} \frac{\Gamma(p+k+1)}{\Gamma(\lambda+p+k+1)}\left(\frac{p+b}{p+k+b}\right)^{s} a_{p+k} z^{p+k+\lambda} \tag{12}
\end{align*}
$$

for $(\lambda+p+1>0, \alpha+p>0$. Also, it is easily verified from (12) that

$$
\begin{equation*}
z\left(\mathfrak{D}_{z}^{-\lambda} J_{s, b}^{\alpha, p} f(z)\right)^{\prime}=(\lambda-\alpha) \mathfrak{D}_{z}^{-\lambda} J_{s, b}^{\alpha, p} f(z)+(\alpha+p) \mathfrak{D}_{z}^{-\lambda} J_{s, b}^{\alpha+1, p} f(z) . \tag{13}
\end{equation*}
$$

Definition 1 (Miller and Mocanu [6]). Denote by Q the set of all functions $f(z)$ that are analytic and injective on $\overline{\mathbb{U}} \backslash E(f)$, where

$$
E(f)=\left\{\eta \in \partial \mathbb{U}: \lim _{z \rightarrow \eta} f(z)=\infty\right\},
$$

and are such that $f^{\prime}(\eta) \neq 0$ for $\eta \in \partial U \backslash E(f)$.
To prove our results we shall need the following lemmas.
Lemma 1 (Bulboacã [4]). Let $q(z)$ be convex univalent in the unit disk \mathbb{U} and θ and ψ be analytic in a domain \mathbb{D} containing $q(\mathbb{U})$. Suppose that

1. $\Re\left[\theta^{\prime}(q(z)) / \psi(q(z))\right]>0$ for $z \in \mathbb{U}$,
2. $z q^{\prime}(z) \psi(q(z))$ is starlike in \mathbb{U}.

If $p(z) \in \mathcal{H}[q(0), 1] \cap Q$ with $p(\mathbb{U}) \subseteq \mathbb{D}$ and $\theta(p(z))+z p^{\prime}(z) \psi(p(z))$ is univalent in \mathbb{U} and

$$
\begin{equation*}
\theta(q(z))+z q^{\prime}(z) \psi(q(z)) \prec \theta(p(z))+z p^{\prime}(z) \psi(p(z)) \tag{14}
\end{equation*}
$$

then $q(z) \prec p(z)$ and q is the best subordinant of (14).
Lemma 2 (Frasin [5]). Let the function $p(z)$ and $q(z)$ be analytic in \mathbb{U} and suppose that $q(z) \neq 0(z \in \mathbb{U})$ is also univalent in \mathbb{U} and that $\frac{z q^{\prime}(z)}{q(z)}$ is starlike univalent in \mathbb{U}. If $q(z)$ satisfies

$$
\begin{equation*}
\Re\left(1+\frac{c_{1}}{\beta} q(z)+\frac{2 c_{2}}{\beta}(q(z))^{2}+\cdots+\frac{n c_{n}}{\beta}(q(z))^{n}-\frac{z q^{\prime}(z)}{q(z)}+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right)>0 \tag{15}
\end{equation*}
$$

and

$$
\begin{gather*}
c_{0}+c_{1} p(z)+c_{2}(p(z))^{2}+\cdots+c_{n}(p(z))^{n}+\beta \frac{z p^{\prime}(z)}{p(z)} \\
\prec c_{0}+c_{1} q(z)+c_{2}(q(z))^{2}+\cdots+c_{n}(q(z))^{n}+\beta \frac{z q^{\prime}(z)}{q(z)}, \tag{16}\\
\left(z \in \mathbb{U} ; c_{0}, c_{1}, c_{2}, \ldots, c_{n}, \beta \in \mathbb{C} ; \beta \neq 0\right),
\end{gather*}
$$

then $p(z) \prec q(z)(z \in \mathbb{U})$ and q is the best dominant.
We now first prove the following subordination result involving the operator $\mathfrak{D}_{z}^{-\lambda} J_{s, b}^{\alpha, p} f(z)$.

2. Subordination results for analytic functions

Theorem 1. Let the function $q(z)$ be analytic and univalent in \mathbb{U} such that $q(z) \neq 0,(z \in \mathbb{U})$. Suppose that $\frac{z q^{\prime}(z)}{q(z)}$ is starlike univalent in \mathbb{U} and the
inequality (15) holds true. Let

$$
\begin{align*}
& \Omega_{j}^{m}\left(c_{0}, c_{1}, c_{2}, \ldots c_{n}, \beta, \alpha, \lambda, p, f\right) \\
& =c_{0}+c_{1}\left(\frac{\Gamma(\lambda+p+1)}{\Gamma(p+1)} \frac{\mathfrak{D}_{z}^{-\lambda} J_{s, b}^{\alpha, p} f(z)}{z^{\lambda+p}}\right)+c_{2}\left(\frac{\Gamma(\lambda+p+1)}{\Gamma(p+1)} \frac{\mathfrak{D}_{z}^{-\lambda} J_{s, b}^{\alpha, p} f(z)}{z^{\lambda+p}}\right)^{2} \tag{17}\\
& +\cdots+c_{n}\left(\frac{\Gamma(\lambda+p+1)}{\Gamma(p+1)} \frac{\mathfrak{D}_{z}^{-\lambda} J_{s, b}^{\alpha, p} f(z)}{z^{\lambda+p}}\right)^{n}+\beta(\alpha+p)\left(\frac{\mathfrak{D}_{z}^{-\lambda} J_{s, b}^{\alpha+1, p} f(z)}{\mathfrak{D}_{z}^{-\lambda} J_{s, b}^{\alpha, p} f(z)}-1\right) .
\end{align*}
$$

If $q(z)$ satisfies

$$
\begin{align*}
& \Omega_{j}^{m}\left(c_{0}, c_{1}, c_{2}, \ldots c_{n}, \beta, \alpha, \lambda, p, f\right) \\
& \prec c_{0}+c_{1} q(z)+c_{2}(q(z))^{2}+\cdots+c_{n}(q(z))^{n}+\beta \frac{z q^{\prime}(z)}{q(z)}, \tag{18}\\
& \quad\left(z \in \mathbb{U} ; c_{0}, c_{1}, c_{2}, \ldots c_{n}, \beta \in \mathbb{C} ; \beta \neq 0\right)
\end{align*}
$$

then

$$
\left(\frac{\Gamma(\lambda+p+1)}{\Gamma(p+1)} \frac{\mathfrak{D}_{z}^{-\lambda} J_{s, b}^{\alpha, p} f(z)}{z^{\lambda+p}}\right) \prec q(z), \quad(z \in \mathbb{U} \backslash\{0\})
$$

and q is the best dominant.
Proof. Define the function $h(z)$ by

$$
h(z)=\frac{\Gamma(\lambda+p+1)}{\Gamma(p+1)} \frac{\mathfrak{D}_{z}^{-\lambda} J_{s, b}^{\alpha, p} f(z)}{z^{\lambda+p}}, \quad(z \in \mathbb{U} \backslash\{0\})
$$

Then a computation shows that

$$
\frac{z h^{\prime}(z)}{h(z)}=\frac{z \mathfrak{D}_{z}^{-\lambda}\left(J_{s, b}^{\alpha, p} f(z)\right)^{\prime}}{\mathfrak{D}_{z}^{-\lambda}\left(J_{s, b}^{\alpha, p} f(z)\right)}-(\lambda+p)
$$

By using the identity (13), we obtain

$$
\frac{z h^{\prime}(z)}{h(z)}=(\alpha+p)\left(\frac{\mathfrak{D}_{z}^{-\lambda} J_{s, b}^{\alpha+1, p} f(z)}{\mathfrak{D}_{z}^{-\lambda} J_{s, b}^{\alpha, p} f(z)}-1\right)
$$

which, in light of hypothesis (16), yields the following subordination

$$
\begin{aligned}
& c_{0}+c_{1} h(z)+c_{2}(h(z))^{2}+\ldots+c_{n}(h(z))^{n}+\beta \frac{z h^{\prime}(z)}{h(z)} \\
& \prec c_{0}+c_{1} q(z)+c_{2}(q(z))^{2}+\cdots+c_{n}(q(z))^{n}+\beta \frac{z q^{\prime}(z)}{q(z)}
\end{aligned}
$$

and Theorem 1 follows by an application of Lemma 2 .
For the choices $q(z)=\frac{1+A z}{1+B z},-1 \leq B<A \leq 1$ and $q(z)=\left(\frac{1+z}{1-z}\right)^{\mu}$, $0 \leq \mu \leq 1$ in Theorem 1, we get Corollaries 1 and 2 below.

Corollary 1. Assume that (15) holds true. If $f \in \mathcal{A}_{p}$ and

$$
\begin{aligned}
& \Omega_{j}^{m}\left(c_{0}, c_{1}, c_{2}, \ldots, c_{n}, \beta, \alpha, \lambda, p, f\right) \\
& \prec c_{0}+c_{1}\left(\frac{1+A z}{1+B z}\right)+c_{2}\left(\frac{1+A z}{1+B z}\right)^{2}+\cdots \\
& \quad+c_{n}\left(\frac{1+A z}{1+B z}\right)^{n}+\beta \frac{(A-B) z}{(1+A z)(1+B z)}, \\
& \quad\left(z \in \mathbb{U} ; c_{0}, c_{1}, c_{2}, \ldots, c_{n}, \beta \in \mathbb{C} ; \beta \neq 0\right),
\end{aligned}
$$

where $\Omega_{j}^{m}\left(c_{0}, c_{1}, c_{2}, \ldots, c_{n}, \beta, \alpha, \lambda, p, f\right)$ is as defined in equation (17), then

$$
\left(\frac{\Gamma(\lambda+p+1)}{\Gamma(p+1)} \frac{\mathfrak{D}_{z}^{-\lambda} J_{s, b}^{\alpha, p} f(z)}{z^{\lambda+p}}\right) \prec \frac{1+A z}{1+B z}
$$

and $\frac{1+A z}{1+B z}$ is the best dominant.
Corollary 2. Assume that (15) holds true. If $f \in \mathcal{A}_{p}$ and

$$
\begin{aligned}
& \Omega_{j}^{m}\left(c_{0}, c_{1}, c_{2}, \ldots, c_{n}, \beta, \alpha, \lambda, p, f\right) \\
& \prec c_{0}+c_{1}\left(\frac{1+z}{1-z}\right)^{\mu}+c_{2}\left(\frac{1+z}{1-z}\right)^{2 \mu}+\ldots \\
& \quad+c_{n}\left(\frac{1+z}{1-z}\right)^{2 n \mu}+\frac{2 \beta \mu z}{1-z^{2}} \\
& \quad\left(z \in \mathbb{U} ; c_{0}, c_{1}, c_{2}, \ldots, c_{n}, \beta \in \mathbb{C} ; \beta \neq 0\right),
\end{aligned}
$$

where $\Omega_{j}^{m}\left(c_{0}, c_{1}, c_{2}, \ldots, c_{n}, \beta, \alpha, \lambda, p, f\right)$ is as defined in equation (17), then

$$
\left(\frac{\Gamma(\lambda+p+1)}{\Gamma(p+1)} \frac{\mathfrak{D}_{z}^{-\lambda} J_{s, b}^{\alpha, p} f(z)}{z^{\lambda+p}}\right) \prec\left(\frac{1+z}{1-z}\right)^{\mu}
$$

and $\frac{1+z}{1-z}$ is the best dominant.
For $q(z)=e^{\epsilon A z},(|\epsilon A|<\pi)$, in Theorem 1, we get the following result.
Corollary 3. Assume that (15) holds true. If $f \in \mathcal{A}_{p}$ and
$\Omega_{j}^{m}\left(c_{0}, c_{1}, c_{2}, \ldots, c_{n}, \beta, \alpha, \lambda, p, f\right) \prec c_{0}+c_{1} e^{\epsilon A z}+c_{2} e^{2 \epsilon A z}+c_{n} e^{n \epsilon A z}+\beta \epsilon A z$, where $\Omega_{j}^{m}\left(c_{0}, c_{1}, c_{2}, \ldots, c_{n}, \beta, \alpha, \lambda, p, f\right)$ is as defined in equation (17), then

$$
\left(\frac{\Gamma(\lambda+p+1)}{\Gamma(p+1)} \frac{\mathfrak{D}_{z}^{-\lambda} J_{s, b}^{\alpha, p} f(z)}{z^{\lambda+p}}\right) \prec e^{\epsilon A z}, \quad(z \in \mathbb{U} \backslash\{0\}),
$$

and $e^{\epsilon A z}$ is the best dominant.

3. Superordination for analytic functions

Next, applying Lemma 1, we obtain the following two theorems.
Theorem 2. Let q be analytic and convex univalent in \mathbb{U} such that $q(z) \neq 0$ and $\frac{z q^{\prime}(z)}{q(z)}$ is starlike univalent in \mathbb{U}. Suppose also that

$$
\begin{gather*}
\Re\left(\frac{c_{1}}{\beta} q(z)+\frac{2 c_{2}}{\beta}(q(z))^{2}+\ldots+\frac{n c_{n}}{\beta}(q(z))^{n}\right)>0 \tag{19}\\
\left(z \in \mathbb{U} ; c_{0}, c_{1}, c_{2}, \ldots c_{n}, \beta \in \mathbb{C} ; \beta \neq 0\right)
\end{gather*}
$$

If $f \in \mathcal{A}_{p}$

$$
\left(\frac{\Gamma(\lambda+p+1)}{\Gamma(p+1)} \frac{\mathfrak{D}_{z}^{-\lambda} J_{s, b}^{\alpha, p} f(z)}{z^{\lambda+p}}\right) \in \mathcal{H}[q(0), 1] \cap Q
$$

and $\Omega_{j}^{m}\left(c_{0}, c_{1}, c_{2}, \ldots, c_{n}, \beta, \alpha, \lambda, p, f\right)$ defined in (17) is univalent in \mathbb{U}, then the following superordination:

$$
\begin{align*}
& c_{0}+c_{1} q(z)+c_{2}(q(z))^{2}+\cdots+c_{n}(q(z))^{n}+\beta \frac{z q^{\prime}(z)}{q(z)} \\
& \prec \Omega_{j}^{m}\left(c_{0}, c_{1}, c_{2}, \ldots, c_{n}, \beta, \alpha, \lambda, p, f\right), \tag{20}\\
& \quad\left(z \in \mathbb{U} ; c_{0}, c_{1}, c_{2}, \ldots c_{n}, \beta \in \mathbb{C} ; \beta \neq 0\right),
\end{align*}
$$

implies that

$$
q(z) \prec\left(\frac{\Gamma(\lambda+p+1)}{\Gamma(p+1)} \frac{\mathfrak{D}_{z}^{-\lambda} J_{s, b}^{\alpha, p} f(z)}{z^{\lambda+p}}\right), \quad(z \in \mathbb{U} \backslash\{0\}),
$$

and $q(z)$ is the best subordinant.
Proof. Let

$$
\theta(\omega)=c_{0}+c_{1} \omega+c_{2} \omega^{2}+\ldots c_{n} \omega^{n} \text { and } \psi(\omega):=\beta \frac{\omega^{\prime}}{\omega}
$$

Then, we observe that $\theta(\omega)$ is analytic in $\mathbb{C}, \psi(\omega)$ is analytic in $\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$ and that $\psi(\omega) \neq 0\left(\omega \in \mathbb{C}^{*}\right)$. Since q is a convex univalent in \mathbb{U}, it follows that

$$
\begin{aligned}
\Re\left(\frac{\theta^{\prime}(q(z))}{\psi(q(z))}\right) & =\Re\left(\frac{c_{1}}{\beta} q(z)+\frac{2 c_{2}}{\beta}(q(z))^{2}+\cdots+\frac{n c_{n}}{\beta}(q(z))^{n}\right)>0 \\
& \left(z \in \mathbb{U} ; c_{0}, c_{1}, c_{2}, \ldots, c_{n}, \beta \in \mathbb{C} ; \beta \neq 0\right)
\end{aligned}
$$

Theorem 2 follows as an application of Lemma 1.
Combining the results of differential subordination and superordination, we state that the following sandwich result.

Theorem 3. Let q_{1} be convex univalent and q_{2} be univalent in \mathbb{U} such that $q_{1}(z) \neq 0$ and $q_{2}(z) \neq 0(z \in \mathbb{U})$. Suppose also that q_{2} satisfies (19) and q_{1} satisfies (15). If $f \in \mathcal{A}_{p}$,

$$
\left(\frac{\Gamma(\lambda+p+1)}{\Gamma(p+1)} \frac{\mathfrak{D}_{z}^{-\lambda} J_{s, b}^{\alpha, p} f(z)}{z^{\lambda+p}}\right) \in \mathcal{H}[q(0), 1] \cap Q
$$

and

$$
\begin{gathered}
c_{0}+c_{1}\left(\frac{\Gamma(\lambda+p+1)}{\Gamma(p+1)} \frac{\mathfrak{D}_{z}^{-\lambda} J_{s, b}^{\alpha, p} f(z)}{z^{\lambda+p}}\right)+c_{2}\left(\frac{\Gamma(\lambda+p+1)}{\Gamma(p+1)} \frac{\mathfrak{D}_{z}^{-\lambda} J_{s, b}^{\alpha, p} f(z)}{z^{\lambda+p}}\right)^{2}+ \\
+\cdots+c_{n}\left(\frac{\Gamma(\lambda+p+1)}{\Gamma(p+1)} \frac{\mathfrak{D}_{z}^{-\lambda} J_{s, b}^{\alpha, p} f(z)}{z^{\lambda+p}}\right)^{n}+\beta(\alpha+p)\left(\frac{\mathfrak{D}_{z}^{-\lambda} J_{s, b}^{\alpha+1, p} f(z)}{\mathfrak{D}_{z}^{-\lambda} J_{s, b}^{\alpha, p} f(z)}-1\right), \\
\left(z \in \mathbb{U} ; c_{0}, c_{1}, c_{2}, \ldots, c_{n}, \beta \in \mathbb{C} ; \beta \neq 0\right)
\end{gathered}
$$

is univalent in \mathbb{U}, then the subordination given by

$$
\begin{align*}
& c_{0}+c_{1} q_{1}(z)+c_{2}\left(q_{1}(z)\right)^{2}+\cdots+c_{n}\left(q_{1}(z)\right)^{n}+\beta \frac{z q_{1}^{\prime}(z)}{q_{1}(z)} \\
& \prec \Omega_{j}^{m}\left(c_{0}, c_{1}, c_{2}, \ldots, c_{n}, \beta, \alpha, \lambda, p, f\right) \tag{21}\\
& \prec c_{0}+c_{1} q_{2}(z)+c_{2}\left(q_{2}(z)\right)^{2}+\cdots+c_{n}\left(q_{2}(z)\right)^{n}+\beta \frac{z q_{2}^{\prime}(z)}{q_{2}(z)}, \\
& \quad\left(z \in \mathbb{U} ; c_{0}, c_{1}, c_{2}, \ldots, c_{n}, \beta \in \mathbb{C} ; \beta \neq 0\right),
\end{align*}
$$

implies that

$$
q_{1}(z) \prec \frac{\Gamma(\lambda+p+1)}{\Gamma(p+1)} \frac{\mathfrak{D}_{z}^{-\lambda} J_{s, b}^{\alpha, p} f(z)}{z^{\lambda+p}} \prec q_{2}(z)
$$

and q_{1} and q_{2} are respectively, the best subordinant and the best dominant of (21).

References

[1] R.M. Ali, V. Ravichandran, M. Hussain Khan, K.G. Subramanian, Differential sandwich theorems for certain analytic functions, Far East Journal of Mathematical Sciences, 15 (1) (2004), 87-94.
[2] T. Bulboacã, Classes of first order differential superordinations, Demonstratio Mathematica, 35 (2) (2002), 287-292.
[3] T. Bulboacã, A class of superordination-preserving integral operators, Indagationes Mathematicae, 13 (3) (2002), 301-311.
[4] T. Bulboacã, Differential subordinations and superordinations, Recent Results, House of Science Books, Cluj-Napoca, 2005.
[5] B.A. Frasin, A new differential operator of analytic functions involving binomial series, Boletim da Sociedade Paranaense de Matemática, 38 (5) (2020), 205-213.
[6] S.S. Miller, P.T. Mocanu, Subordinations of differential superordinations, Complex Variables, Theory and Application: An International Journal, 48 (10) (2003), 815-826.
[7] M. Obradovic, M.K. Aouf, S. Owa, On some results for starlike functions of complex order, Publications de l'Institut Mathématique, 46 (60) (1989) 79-85.
[8] M. Obradovic, S. Owa, On certain properties for some classes of starlike functions, Journal of Mathematical Analysis and Applications, 145 (2) (1990), 357-364.
[9] S. Owa, H.M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canadian Journal of Mathematics, 39 (5) (1987), 1057-1077.
[10] T.N. Shanmugam, S. Sivasubramanian, B.A. Frasin, S. Kavitha, On sandwich theorems for certain subclasses of analytic functions involving Carlson-Shaffer operator, Journal of the Korean Mathematical Society, 45 (3) (2008), 611-620.
[11] S. Shams, S.R. Kulkarni, J.M. Jahangiri, Subordination properties of p-valent functions defined by integral operators, International Journal of Mathematics and Mathematical Sciences, 2006 (2006), Article ID: 94572, 3 pages.
[12] V. Singh, On some criteria for univalence and starlikeness, Indian Journal of Pure and Applied Mathematics, 34 (4) (2003), 569-577.
[13] A. Soni, S. Kant, Differential subordination and superordination results for p-valent analytic functions, Journal of Mathematical Analysis, 6 (5) (2015), 7-21.
[14] H.M. Srivastava, A Survey of some recent developments on higher transcendental functions of analytic number theory and applied mathematics, Symmetry, 13 (12) (2021), Article ID: 2294, 22 pages.
[15] H.M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iranian Journal of Science and Technology, Transaction A: Science, 44 (2020), 327-344.
[16] H.M. Srivastava, Some general families of the Hurwitz-Lerch Zeta functions and their applications: Recent developments and directions for further researchers, Proceedings of the Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan, 45 (2) (2019), 234-269.
[17] H.M. Srivastava, The Zeta and related functions: Recent developments, Journal of Advanced Engineering and Computation, 3 (1) (2019), 329-354.
[18] H.M. Srivastava, E.S.A. Abu Jarad, F. Jarad, G. Srivastava, M.H.A. Abu Jarad, The Marichev-Saigo-Maeda fractional-calculus operators involving the (p, q)-extended Bessel and Bessel-Wright functions, Fractal and Fractional, 5 (4) (2021), Article ID: 210, 15 pages.
[19] H.M. Srivastava, A.K. Wanas, R. Srivastava, Applications of the q-Srivastava-Attiya operator involving a certain family of Bi-univalent functions associated with the Horadam polynomials, Symmetry, 13 (7) (2021), Article ID: 1230, 14 pages.
[20] H.M. Srivastava, S. Owa (Eds.), Current topics in analytic function theory, World Scientific Publishing Company, Singapore, 1992.
[21] H.M. Srivastava, A.A. Attiya, An integral operator associated with the HurwitzLerch Zeta function and differential subordination, Integral Transforms and Special Functions, 18 (3) (2007), 207-216.
[22] Z.G. Wang, Q.G. Li, Y.P. Jiang, Certain subclasses of multivalent analytic functions involving the generalized Srivastava-Attiya operator, Integral Transforms and Special Functions, 21 (3) (2010), 221-234.

Amit Soni
Department of Mathematics
Govt. Engineering College
Bikaner, 334004, Rajasthan
India
E-mail address: aamitt1981@gmail.com

[^0]: 2010 Mathematics Subject Classification. Primary: 30C45; Secondary: 30C80.
 Key words and phrases. p-valent analytic function, Differential subordination, Differential superordination, "Srivastava- Attiya" fractional integral operator.

 Full paper. Received 9 March 2022, revised 11 April 2022, accepted 22 August 2022, available online 12 October 2022.

